Advances in Engineering Innovation

Advances in Engineering Innovation

Vol. 1, 20 September 2023


Open Access | Article

Study and simulation of thrombus properties

Huihui Fang 1 , Jing Dong * 2 , Chen Wei 3 , Yangjie Zuo 4
1 The Second Clinical College of Medicine, Shaanxi University of Chinese Medicine
2 The Second Affiliated Hospital of Shaanxi University of Chinese Medicine
3 The Second Clinical College of Medicine, Shaanxi University of Chinese Medicine
4 Shaanxi University of Chinese Medicine

* Author to whom correspondence should be addressed.

Advances in Engineering Innovation, Vol. 1, 42-50
Published 20 September 2023. © 2023 The Author(s). Published by EWA Publishing
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Citation Huihui Fang, Jing Dong, Chen Wei, Yangjie Zuo. Study and simulation of thrombus properties. AEI (2023) Vol. 1: 42-50. DOI: 10.54254/2977-3903/1/2023009.

Abstract

Thrombosis is a common pathological symptom that endangers cardiovascular and cerebrovascular health, and its essence is that blood clots in the vascular wall cause serious problems in the body. In vitro simulation of thrombosis can help us understand the composition and nature of thrombosis, and provide basis and convenience for better thrombus removal technology. This paper will discuss the existing thrombosis simulation methods and their development, and propose a new in vitro simulation of thrombosis preparation.

Keywords

thrombus, thrombus properties, simulated thrombus

References

1. BROUWER P A, BRINJIKJI W, DE MEYER S F. Clot Pathophysiology Why Is It Clinically Important?Neuroimaging Clinics of North America, 2018, 28(4): 611-623. DOI:10.1016/j.nic2018.06.005.

2. LIU G M, CHEN H bo, HOU J feng. Platelet adhesion emulation: A novel method for estimating the device thrombosis potential of a ventricular assist device. International Journal of Artificial Organs, 2020, 43(4): 252-257. DOI:10.1177/0391398819885946.

3. JOLUGBO P, ARIËNS R A S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke, 2021, 52(3): 1131-1142. DOI:10.1161/STROKEAHA.120.032810.

4. MERRITT W, HOLTER A M, BEAHM S. Quantifying the mechanical and histological properties of thrombus analog made from human blood for the creation of synthetic thrombus for thrombectomy device testing. Journal of Neurointerventional Surgery, 2018, 10(12): 1168-1173. DOI:10.1136/neurintsurg-2017-013675.

5. BODARY P F, EITZMAN D T. Animal models of thrombosis. Current Opinion in Hematology, 2009, 16(5): 342-346. DOI:10.1097/MOH.0b013e32832e9ddd.

6. DURUKAN A, TATLISUMAK T. Acute ischemic stroke: Overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia[J/OL]. Pharmacology Biochemistry and Behavior, 2007, 87(1): 179-197. DOI:10.1016/j.pbb.2007.04.015.

7. KAN I, YUKI I, MURAYAMA Y. A Novel Method of Thrombus Preparation for Use in a Swine Model for Evaluation of Thrombectomy Devices. American Journal of Neuroradiology, 2010, 31(9): 1741-1743. DOI:10.3174/ajnr. A1991.

8. FORBES C D, PRENTICE C R. Thrombus formation and artificial surfaces[J/OL]. British Medical Bulletin, 1978, 34(2): 201-207. DOI:10.1093/oxfordjournals.bmb. a071492.

9. ANAGNOSTAKOU V, EPSHTEIN M, KUHN A L. Preclinical modeling of mechanical thrombectomy[J/OL]. Journal of Biomechanics, 2022, 130: 110894. DOI:10.1016/j.jbiomech. 2021.110894.

10. GUERREIRO H, WORTMANN N, ANDERSEK T. Novel synthetic clot analogs for in-vitro stroke modelling[J/OL]. Plos One, 2022, 17(9): e0274211. DOI:10.1371/journal.pone.0274211.

11. SIMON S, GREY C P, MASSENZO T. Exploring the efficacy of cyclic vs static aspiration in a cerebral thrombectomy model: an initial proof of concept study[J/OL]. Journal of NeuroInterventional Surgery, 2014, 6(9): 677-683. DOI:10.1136/neurintsurg-2013-010941.

12. ROBINSON R A, HERBERTSON L H, SARKAR DAS S. Limitations of using synthetic blood clots for measuring in vitro clot capture efficiency of inferior vena cava filters[J/OL]. Medical Devices (Auckland, N.Z.), 2013, 6: 49-57. DOI:10.2147/MDER.S42555.

13. ALKARITHI G, DUVAL C, SHI Y. Thrombus Structural Composition in Cardiovascular Disease[J/OL]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41(9): 2370-2383. DOI:10.1161/ATVBAHA.120.315754.

14. TAYLOR J O, MEYER R S, DEUTSCH S. Development of a computational model for macroscopic predictions of device-induced thrombosis. Biomechanics and Modeling in Mechanobiology, 2016, 15(6): 1713-1731. DOI:10.1007/s10237-016-0793-2.

15. DE MEYER S F, ANDERSSON T, BAXTER B. Analyses of thrombi in acute ischemic stroke: A consensus statement on current knowledge and future directions. International Journal of Stroke, 2017, 12(6): 606-614. DOI:10.1177/1747493017709671.

16. HUANG C, SHIH C, LIU T Y. Assessing the Viscoelastic Properties of Thrombus Using a Solid-Sphere-Based Instantaneous Force Approach. Ultrasound in Medicine and Biology, 2011, 37(10): 1722-1733. DOI:10.1016/j.ultrasmedbio.2011.06.026.

17. CHEN P Y, SHIH C , HUANG C . Assessing the Viscoelastic Properties of Thrombus Using Shear Wave Dispersion Ultrasound Vibrometry.International Ultrasonics Symposium(ius).NewYork:Ieee,2012[2023-02-21]. DOI:10.1109/ULTSYM.2012.0589.

18. HUANG C, CHEN P Y, SHIH C. Estimating the viscoelastic modulus of a thrombus using an ultrasonic shear-wave approach. Medical Physics, 2013, 40(4): 042901. DOI:10.1118/1.4794493.

19. KIM E, KIM O V, MACHLUS K R. Correlation between fibrin network structure and mechanical properties: an experimental and computational analysis. Soft Matter, 2011, 7(10): 4983-4992. DOI:10.1039/c0sm01528h.

20. WEAFER F M, DUFFY S, MACHADO I. Characterization of strut indentation during mechanical thrombectomy in acute ischemic stroke clot analogs. Journal of Neurointerventional Surgery, 2019, 11(9): 891-897. DOI:10.1136/neurintsurg-2018-014601.

21. FILIPOVIC N, KOJIC M, TSUDA A. Modelling thrombosis using dissipative particle dynamics method[J/OL]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 366(1879): 3265-3279. DOI:10.1098/rsta.2008.0097.

22. XIE H, KIM K, AGLYAMOV S R. Correspondence of ultrasound elasticity imaging to direct mechanical measurement in aging DVT in rats. Ultrasound in Medicine and Biology, 2005, 31(10): 1351-1359. DOI:10.1016/j.ultrasmedbio.2005.06.005.

23. AGLYAMOV S R, XIE H, KIM K. Young’s modulus reconstruction for elasticity Imaging of deep venous thrombosis: Animal studies[C/OL]//WALKER W F, EMELIANOV S Y. Medical Imaging 2004: Ultrasonic Imaging and Signal Processing:5373. Bellingham: Spin-Int Soc OpticalEngineering,2004:193-201[2023-08-05]. https://www.webofscience.com/wos/woscc/summary/d6ee768c-5e38-474a-ae76-a8de468b66e9-9c1909dd/relevance/1. DOI:10.1117/12.539454.

24. JACKSON S P, NESBITT W S, KULKARNI S. Signaling events underlying thrombus formation[J/OL]. Journal of Thrombosis and Hemostasis, 2003, 1(7): 1602-1612. DOI:10.1046/j.1538-7836.2003.00267x.

25. RANJBAR J, YANG Y, HARPER A G S. Developing human tissue engineered arterial constructs to simulate human in vivo thrombus formation[J/OL]. Platelets, 2023, 34(1) [2023-06-16]. DOI:10.1080/09537104.2022.2153823.

26. CHUEH J Y, WAKHLOO A K, HENDRICKS G H. Mechanical Characterization of Thromboembolism in Acute Ischemic Stroke and Laboratory Embolus Analogs. American Journal of Neuroradiology, 2011, 32(7): 1237-1244. DOI:10.3174/ajnr. A2485.

27. KRASOKHA N, THEISEN W, REESE S. Mechanical properties of blood clots - a new test method. Materialwissenschaft Und Werkstofftechnik, 2010, 41(12): 1019-1024. DOI:10.1002/mawe.201000703.

28. GRALLA J, SCHROTH G, REMONDA L. A dedicated animal model for mechanical thrombectomy in acute stroke[J]. AJNR. American journal of neuroradiology, 2006, 27(6): 1357-1361.

29. GOUNIS M J, WAKHLOO A K, CHUEH J Y. Preclinical investigations for thrombectomy devices--does it translate to humans? Stroke, 2013, 44(6 Suppl 1): S7-S10. DOI:10.1161/STROKEAHA.111.000692.

30. DUFFY S, FARRELL M, MCARDLE K. Novel methodology to replicate clot analogs with diverse composition in acute ischemic stroke. Journal of Neurointerventional Surgery, 2017, 9(5): 486-491. DOI:10.1136/neurintsurg-2016-012308.

31. SOIZE S, PIEROT L, MIRZA M. Fast Stent Retrieval Improves Recanalization Rates of Thrombectomy: Experimental Study on Different Thrombi. American Journal of Neuroradiology, 2020, 41(6): 1049-1053. DOI:10.3174/ajnr.A6559.

32. KIM O V, LITVINOV R I, WEISEL J W. Structural basis for the nonlinear mechanics of fibrin networks under compression. Biomaterials, 2014, 35(25): 6739-6749. DOI:10.1016/j.biomaterials.2014.04.056.

33. CAHALANE R M E, DE VRIES J J J, DE MAAT M P M. Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues. Annals of Biomedical Engineering, 2023[2023-06-21]. DOI:10.1007/s10439-023-03181-6.

34. MALONE F, MCCARTHY E, DELASSUS P. The Mechanical Characterization of Bovine Embolus Analogues Under Various Loading Conditions. Cardiovascular Engineering and Technology, 2018, 9(3): 489-502. DOI:10.1007/s13239-018-0352-3.

35. MORRISON T M, PATHMANATHAN P, ADWAN M. Advancing Regulatory Science With Computational Modeling for Medical Devices at the FDA’s Office of Science and Engineering Laboratories. Frontiers in Medicine, 2018, 5: 241. DOI:10.3389/fmed.2018.00241.

Data Availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors who publish this journal agree to the following terms:

1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.

2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.

3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open Access Instruction).

Volume Title
ISBN (Print)
ISBN (Online)
Published Date
20 September 2023
Series
Advances in Engineering Innovation
ISSN (Print)
2977-3903
ISSN (Online)
2977-3911
DOI
10.54254/2977-3903/1/2023009
Copyright
20 September 2023
Open Access
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Copyright © 2023 EWA Publishing. Unless Otherwise Stated